direct product, metabelian, supersoluble, monomial
Aliases: C3×C33⋊C6, C34⋊2C6, C3≀C3⋊8C6, (C3×He3)⋊4S3, He3⋊1(C3×S3), C33⋊7(C3×C6), C33.57(C3×S3), C33⋊C2⋊4C32, C32.13(S3×C32), C32.42(C32⋊C6), (C3×C3≀C3)⋊4C2, C3.4(C3×C32⋊C6), (C3×C33⋊C2)⋊1C3, SmallGroup(486,116)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C3×C33⋊C6 |
Generators and relations for C3×C33⋊C6
G = < a,b,c,d,e | a3=b3=c3=d3=e6=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1c-1, cd=dc, ece-1=c-1d-1, ede-1=d-1 >
Subgroups: 870 in 123 conjugacy classes, 22 normal (13 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C3×S3, C3⋊S3, C3×C6, C3×C9, He3, He3, 3- 1+2, C33, C33, C32⋊C6, S3×C32, C3×C3⋊S3, C33⋊C2, C3≀C3, C3≀C3, C3×He3, C3×3- 1+2, C34, C33⋊C6, C3×C32⋊C6, C3×C33⋊C2, C3×C3≀C3, C3×C33⋊C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C32⋊C6, S3×C32, C33⋊C6, C3×C32⋊C6, C3×C33⋊C6
(1 12 15)(2 7 16)(3 8 17)(4 9 18)(5 10 13)(6 11 14)
(1 12 15)(4 18 9)
(1 15 12)(3 8 17)(4 9 18)(6 14 11)
(1 12 15)(2 16 7)(3 8 17)(4 18 9)(5 10 13)(6 14 11)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
G:=sub<Sym(18)| (1,12,15)(2,7,16)(3,8,17)(4,9,18)(5,10,13)(6,11,14), (1,12,15)(4,18,9), (1,15,12)(3,8,17)(4,9,18)(6,14,11), (1,12,15)(2,16,7)(3,8,17)(4,18,9)(5,10,13)(6,14,11), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)>;
G:=Group( (1,12,15)(2,7,16)(3,8,17)(4,9,18)(5,10,13)(6,11,14), (1,12,15)(4,18,9), (1,15,12)(3,8,17)(4,9,18)(6,14,11), (1,12,15)(2,16,7)(3,8,17)(4,18,9)(5,10,13)(6,14,11), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18) );
G=PermutationGroup([[(1,12,15),(2,7,16),(3,8,17),(4,9,18),(5,10,13),(6,11,14)], [(1,12,15),(4,18,9)], [(1,15,12),(3,8,17),(4,9,18),(6,14,11)], [(1,12,15),(2,16,7),(3,8,17),(4,18,9),(5,10,13),(6,14,11)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)]])
G:=TransitiveGroup(18,162);
(1 5 8)(2 6 9)(3 4 7)(10 22 18)(11 23 19)(12 24 20)(13 25 21)(14 26 16)(15 27 17)
(2 17 20)(3 21 18)(4 13 10)(6 15 12)(7 25 22)(9 27 24)
(1 19 16)(3 18 21)(4 10 13)(5 11 14)(7 22 25)(8 23 26)
(1 16 19)(2 20 17)(3 18 21)(4 10 13)(5 14 11)(6 12 15)(7 22 25)(8 26 23)(9 24 27)
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)
G:=sub<Sym(27)| (1,5,8)(2,6,9)(3,4,7)(10,22,18)(11,23,19)(12,24,20)(13,25,21)(14,26,16)(15,27,17), (2,17,20)(3,21,18)(4,13,10)(6,15,12)(7,25,22)(9,27,24), (1,19,16)(3,18,21)(4,10,13)(5,11,14)(7,22,25)(8,23,26), (1,16,19)(2,20,17)(3,18,21)(4,10,13)(5,14,11)(6,12,15)(7,22,25)(8,26,23)(9,24,27), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;
G:=Group( (1,5,8)(2,6,9)(3,4,7)(10,22,18)(11,23,19)(12,24,20)(13,25,21)(14,26,16)(15,27,17), (2,17,20)(3,21,18)(4,13,10)(6,15,12)(7,25,22)(9,27,24), (1,19,16)(3,18,21)(4,10,13)(5,11,14)(7,22,25)(8,23,26), (1,16,19)(2,20,17)(3,18,21)(4,10,13)(5,14,11)(6,12,15)(7,22,25)(8,26,23)(9,24,27), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );
G=PermutationGroup([[(1,5,8),(2,6,9),(3,4,7),(10,22,18),(11,23,19),(12,24,20),(13,25,21),(14,26,16),(15,27,17)], [(2,17,20),(3,21,18),(4,13,10),(6,15,12),(7,25,22),(9,27,24)], [(1,19,16),(3,18,21),(4,10,13),(5,11,14),(7,22,25),(8,23,26)], [(1,16,19),(2,20,17),(3,18,21),(4,10,13),(5,14,11),(6,12,15),(7,22,25),(8,26,23),(9,24,27)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])
G:=TransitiveGroup(27,199);
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3Q | 3R | ··· | 3W | 6A | ··· | 6H | 9A | ··· | 9F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 6 | ··· | 6 | 9 | ··· | 9 | 27 | ··· | 27 | 18 | ··· | 18 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | C3×S3 | C32⋊C6 | C33⋊C6 | C3×C32⋊C6 | C3×C33⋊C6 |
kernel | C3×C33⋊C6 | C3×C3≀C3 | C33⋊C6 | C3×C33⋊C2 | C3≀C3 | C34 | C3×He3 | He3 | C33 | C32 | C3 | C3 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 1 | 6 | 2 | 1 | 3 | 2 | 6 |
Matrix representation of C3×C33⋊C6 ►in GL6(𝔽19)
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
7 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
12 | 0 | 0 | 11 | 0 | 0 |
0 | 7 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
7 | 0 | 0 | 7 | 0 | 0 |
0 | 7 | 0 | 0 | 7 | 0 |
0 | 0 | 7 | 0 | 0 | 7 |
0 | 18 | 0 | 0 | 6 | 0 |
0 | 0 | 18 | 0 | 0 | 6 |
18 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(19))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[11,0,0,7,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,0,0,12,0,0,0,11,0,0,7,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1],[11,0,0,7,0,0,0,11,0,0,7,0,0,0,11,0,0,7,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,18,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,6,0,0,1,6,0,0,1,0,0,0,6,0,0,1,0] >;
C3×C33⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_3^3\rtimes C_6
% in TeX
G:=Group("C3xC3^3:C6");
// GroupNames label
G:=SmallGroup(486,116);
// by ID
G=gap.SmallGroup(486,116);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,867,873,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1*c^-1,c*d=d*c,e*c*e^-1=c^-1*d^-1,e*d*e^-1=d^-1>;
// generators/relations